G-Quadruplex structures are stable and detectable in human genomic DNA
نویسندگان
چکیده
The G-quadruplex is an alternative DNA structural motif that is considered to be functionally important in the mammalian genome for transcriptional regulation, DNA replication and genome stability, but the nature and distribution of G-quadruplexes across the genome remains elusive. Here, we address the hypothesis that G-quadruplex structures exist within double-stranded genomic DNA and can be explicitly identified using a G-quadruplex-specific probe. An engineered antibody is employed to enrich for DNA containing G-quadruplex structures, followed by deep sequencing to detect and map G-quadruplexes at high resolution in genomic DNA from human breast adenocarcinoma cells. Our high sensitivity structure-based pull-down strategy enables the isolation of genomic DNA fragments bearing single, as well as multiple G-quadruplex structures. Stable G-quadruplex structures are found in sub-telomeres, gene bodies and gene regulatory regions. For a sample of identified target genes, we show that G-quadruplex-stabilizing ligands can modulate transcription. These results confirm the existence of G-quadruplex structures and their persistence in human genomic DNA.
منابع مشابه
In silico screening of G-Quadruplex Structures in Wilms tumor 1 Gene Promoter
Introduction: X-ray diffraction studies have revealed that guanines in a DNA stands may be arranged in quartet and form a structure called G-quadruplexs. Bioinformatics studies suggested the formation of G-quadruplex structure in human crucial genes, including Wilms tumor 1 (WT1). The aim of this study was to in silico analysis of the guanine-rich sequence in the promoter region of the WT1 gene...
متن کاملSURVEY AND SUMMARY G-quadruplexes and helicases
Guanine-rich DNA strands can fold in vitro into noncanonical DNA structures called G-quadruplexes. These structures may be very stable under physiological conditions. Evidence suggests that Gquadruplex structures may act as ‘knots’ within genomic DNA, and it has been hypothesized that proteins may have evolved to remove these structures. The first indication of how G-quadruplex structures could...
متن کاملG-Quadruplexes Involving Both Strands of Genomic DNA Are Highly Abundant and Colocalize with Functional Sites in the Human Genome
The G-quadruplex is a non-canonical DNA structure biologically significant in DNA replication, transcription and telomere stability. To date, only G4s with all guanines originating from the same strand of DNA have been considered in the context of the human nuclear genome. Here, I discuss interstrand topological configurations of G-quadruplex DNA, consisting of guanines from both strands of gen...
متن کاملThe Yeast Pif1 Helicase Prevents Genomic Instability Caused by G-Quadruplex-Forming CEB1 Sequences In Vivo
In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of ...
متن کاملDetection of G-Quadruplex DNA Using Primer Extension as a Tool
DNA sequence and structure play a key role in imparting fragility to different regions of the genome. Recent studies have shown that non-B DNA structures play a key role in causing genomic instability, apart from their physiological roles at telomeres and promoters. Structures such as G-quadruplexes, cruciforms, and triplexes have been implicated in making DNA susceptible to breakage, resulting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013